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Cumulants[1, 2] can be viewed as specific nonlinear functions of the power moments
of a probability or other distribution1. Here we confine our attention to cumulants of
univariate distributions. Cumulants possess unusual and very useful properties, among
them: the cumulants Cn of order n > 1 are origin-independent, and the cumulants of
convoluted distributions are additive. A commonplace example of this use, sometimes
known as “adding in quadrature”, is that of adding the variances (second cumulants) of
convoluted Gaussian distributions.

In 1983, in a condensed-matter physics paper, we derived[3] very simple recurrence re-
lations between cumulants and power moments, ones that appear not to have been discov-
ered elsewhere. Understandably, these relations, coming from outside the mathematics and
statistics literature, have not received much attention apart from its original application.
Their derivation involved the use of un-normalized probability distributions, which con-
ventionally are not much used in statistics, and differentiation with respect to an auxiliary
variable. Our recurrence relations may have been overlooked for those reasons. However,
they are simple, useful, and computationally reasonably efficient, so we think they should
be better known – whence this brief note.

Here we wish to demonstrate their utility, and give simple implementations using
Mathematica[4]. Using our coupled recurrence relations, in about a minute of computation
time, we can generate all expressions up to n = 50 that relate the nth order cumulants
to all moments with m ≤ n, or alternatively, relate all nth moments up to n = 50 to all
cumulants with m ≤ n. C50 has 204226 terms, and the total number of computed terms
in the hierarchy is nearly 1.3 million (1295972). These are posted as compressed zip files
at http://gbxafs.iit.edu/cumulants/.

Calculating all such relations up to n = 60 takes about five minutes on our laptop
computer, and the data structure containing those relations takes about 5.6 GB to store,
with close to a million (966467) terms. It is straightforward to continue the recurrence for

1Some online resources can be found in http://www.scholarpedia.org/article/Cumulants, https:
//en.wikipedia.org/wiki/Cumulant, and https://www.stat.uchicago.edu/~pmcc/courses/stat306/

2013/cumulants.pdf.
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the n+ 1th cumulant and beyond, knowing only the expression for the nth in terms of the
internal representation in terms of un-normalized moments.

It is also helpful to have expressions for the moments in terms of the cumulants. For
low orders, as is typically done, the equations can be inverted to find those expressions, but
its rapidly becomes impractical to do so higher orders. The execution time increases by a
factor of about 1.57 for each increase in n by 1. In contrast our recursion relation can be
used to directly generate such expressions – the time for those calculations increases roughly
by a factor of 1.24 for increase in n by 1. The differences of their rates of exponential growth
are quite significant. These recurrence relations and Mathematica[4] code for generating
those expressions can be found below, as are some possibilities for ways to compute them
efficiently to much higher orders.

1 Cumulants in terms of Moments

The recurrence relations[3] specifically are

Cn+1(γ) =
dCn(γ)

dγ
; Pn+1(γ) =

dPn(γ)

dγ
; C0(γ) = lnP0(γ),

with γ a formal parameter of no significance here. These give

C1 =
dC0

dγ
=
d lnP0(γ)

dγ
=

1

P0(γ)

dP0(γ)

dγ
=
P1(γ)

P0(γ)
= p1,

where pn are the moments of the normalized distribution, and Pn refer to the un-normalized
distribution. Similarly

C2 =
dC1

dγ
=

d

dγ

P1

P0
=
P0P

′
1 − P1P

′
0

P 2
0

=
P0P2 − P1P1

P 2
0

= p2 − p21,

where we have suppressed the dependence on the formal parameter γ, and the prime indi-
cates differentiation with respect to γ. Expressions for cumulants of all orders can be gen-
erated this way, which is relatively fast and easy up to order ≈ 60 and more using modern
computer algebra systems, or potentially other methods described below for higher orders.

This can be implemented very simply in Mathematica as:

nmax = 50; nextn = D[#, γ]/.{D[P[n , γ], γ]→ P[n + 1, γ]}&;
AbsoluteTiming[tableau = NestList[nextn,Log[P[0, γ]],nmax]; ].
cumulants = Drop[tableau//.{P[n , γ]→ p[n], p[0]→ 1}, 1];
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Up to fifth order (so as to fit on the page) they are:

c1 = p1
c2 = p2 − p21
c3 = 2p31 − 3p2p1 + p3
c4 = −6p41 + 12p2p

2
1 − 4p3p1 − 3p22 + p4

c5 = 24p51 − 60p2p
3
1 + 20p3p

2
1 + 30p22p1 − 5p4p1 − 10p2p3 + p5

. . .

Choosing the origin so that p1 = 0 we have:

c1 = p1 = 0
c2 = p2
c3 = p3
c4 = p4 − 3p22
c5 = p5 − 10p2p3
c6 = 30p32 − 15p4p2 − 10p23 + p6
c7 = 210p3p

2
2 − 21p5p2 − 35p3p4 + p7

c8 = −630p42 + 420p4p
2
2 + 560p23p2 − 28p6p2 − 35p24 − 56p3p5 + p8

c9 = −7560p3p
3
2 + 756p5p

2
2 + 2520p3p4p2 − 36p7p2 + 560p33 − 126p4p5 − 84p3p6 + p9

. . .

2 Moments in terms of Cumulants

Expressions for the moments in terms of the cumulants can be generated in a similar way:

P1 =
dP0

dγ
=
d(eC0)

dγ
= eC0

dC0

dγ
= eC0C1 = P0C1

giving p1 = P1/P0 = C1. Continuing, we have

P2 =
d(eC0C1)

dγ
= eC0C

′
0C1 + eC0C

′
1 = eC0(C2

1 + C2) = P0(C
2
1 + C2)

giving p2 = P2/P0 = C2
1 + C2, and so on. Here the prime denotes differentiation with

respect to γ.

Choosing the origin at the centroid of the distribution vastly simplifies the expressions.
The full forms can be reconstituted from the simplified forms if needed. The recurrence
can be implemented very simply in Mathematica as:

nmax = 50; nextn = D[#, γ]/.{D[c[n , γ], γ]→ c[n + 1, γ]}&;
AbsoluteTiming[tableau = NestList[nextn,Exp[c[0, γ]], nmax]; ].
moments = Drop[tableau//.{c[n , γ]→ c[n], c[0]→ 0}, 1];
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For arbitrary origin we have (up to sixth order, to fit on the page):

p1 = c1
p2 = c21 + c2
p3 = c31 + 3c2c1 + c3
p4 = c41 + 6c2c

2
1 + 4c3c1 + 3c22 + c4

p5 = c51 + 10c2c
3
1 + 10c3c

2
1 + 15c22c1 + 5c4c1 + 10c2c3 + c5

p6 = c61 + 15c2c
4
1 + 20c3c

3
1 + 45c22c

2
1 + 15c4c

2
1 + 60c2c3c1 + 6c5c1 + 15c32 + 10c23 + 15c2c4 + c6

. . .

.

However, if we choose the origin to be located at the centroid of the distribution p1 = 0,
and many terms vanish:

p1 = 0
p2 = c2
p3 = c3
p4 = 3c22 + c4
p5 = 10c2c3 + c5
p6 = 15c32 + 15c4c2 + 10c23 + c6
p7 = 105c3c

2
2 + 21c5c2 + 35c3c4 + c7

p8 = 105c42 + 210c4c
2
2 + 280c23c2 + 28c6c2 + 35c24 + 56c3c5 + c8

p9 = 1260c3c
3
2 + 378c5c

2
2 + 1260c3c4c2 + 36c7c2 + 280c33 + 126c4c5 + 84c3c6 + c9

. . .

For c50, 85% of the terms vanish. They can be reconstituted however. For example,
setting pn = 〈(x−x̄)n〉; expanding the terms, and averaging regenerates the full expressions.
Storing expressions in the p1 → 0 form might be beneficial if storage of large expressions
for very large n were to become onerous. This can give a more than 7-fold reduction in
required memory.

3 Discussion and Conclusion

The recurrence relations and Mathematica code implementations allow computation of
expressions for the cumulants in terms of the moments, and vice versa for fairly large
systems. The need for this is unclear, but there may be applications in statistical or
combinatorial mathematics. At minimum the recurrence relations work very nicely for
modest sized systems as well.

Explicitly solving for the moments in terms of the cumulants rapidly becomes imprac-
tical and time consuming for large n, even using sophisticated computer algebra systems,
so having this direct way to compute the moments in terms of the cumulants is useful.

If one were interested in carrying out the recurrence to much higher order, there is an al-
ternative to explicitly taking the derivatives. Because the recurrence relations only involve
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taking derivatives of sums of simple products of moments to various integer powers (includ-
ing negative powers of P0), the operation can be trivially parallelized over the terms in the
sum, because the derivative is a linear operation. Although ParallelMap in Mathematica is
quite effective, it should be feasible to parallel-process these operations even on GPU cores,
in which each core takes the derivative of a single term or a batch of terms in a cumulant
expression. Only integer addition (subtraction) of exponents is required to calculate the
derivatives. Using Feynman’s trick for differentiating a product of expressions taken to
various powers, one can quickly evaluate derivatives of the individual terms, because the
computation really just amounts to keeping track of the integer exponents of the various
moment factors, and some weights. Specifically, if an individual term T = cΠn

j=0P
mj

j

then log T = log c +
∑n

j=0mj logPj and T
′

= T (
∑n

j=0mjP
′
j/Pj) = T (

∑n
j=0mjPj+1/Pj),

using the recurrence relation. Each term can be described simply by an overall multi-
plicative signed-integer factor, and a list of signed-integer-valued powers of the various
un-normalized moments. Multiplying through by T simply increments the powers of the
corresponding terms by various integers, so no floating point operations are required. The
sum over all the terms is then multiplied by a signed-integer (possibly large) scale factor.
Such arithmetical bookkeeping is simple enough it easily could be done at the individual
GPU or TPU kernel level, with the total expressions summed at the end. A GPU with
thousands of cores should make short work of such calculations, depending on operational
details such as bandwidth to memory etc, if such calculations were needed. We have im-
plemented this scheme in Mathematica, and it works correctly, without explicitly taking
derivatives, as advertised.
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