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Thickness Effects in EXAFS spectra

Several experimental problems can cause insidious distortions of EXAFS amplitudes
and XANES spectra.  These errors usually can be avoided if care is taken in sample
preparation, but they are all too easy to overlook, and are frequently ignored.  Foremost
among these problems are:

A) Thickness/particle size effects (sample nonuniformity and harmonics)
B)  Self absorption effects in fluorescence

These experimental problems have been treated by several authors.  For a more
complete review of experimental difficulties, perusal of the review article by Heald1 is
highly recommended.  The purposes of this technical note are to  

Uniform sample

The attenuation of x-rays by a homogeneous amorphous or polycrystalline sample is
usually well-represented by the equation  I=I0 exp(-µ(E)x), where I0 and I are respectively

the x-ray flux incident on a sample and the flux transmitted through it. µ(E) is the
absorption coefficient at x-ray energy E, and x is the sample thickness.  The expression
easily can be derived by assuming that a thin layer of sample of thickness δx decreases the

beam intensity by a constant fraction µδx: δI/I = –µδx.  Stacking up many thin layers to

make a sample of finite thickness x gives the standard “Beer’s law” equation above: ⌡⌠δI/I 

=ln(I)= -⌡⌠µδx =-µx+const. This description presumes that the x-rays pass through the

layers in series, that no part of the sample is bypassed. It also neglects interference effects
such as diffraction and the Borrman effect.

The thickness µ-1 at which I/I0 drops to 1/e is called one absorption length.  If the
sample consists of granules larger than one absorption length, interpretation of the spectra
is more complicated.  Similarly, if the sample consists of several types of particles of
different composition, the absorption length must be long enough that many particles of
each type are sampled by the x-ray beam, otherwise errors of interpretation may result.   

Nonuniform sample
 If the sample is nonuniform, the measured absorption µ(E) will differ from the true

value.  In this case, the sample area presented to the beam consists of regions of differing

                                                
1  S.M. Heald, in “X-ray Absorption”, Chapter 3, D.C. Koningsberger and R. Prins, eds., Wiley (1988)
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thicknesses.  Defining P(x) as the fraction of the sample area that is of thickness x, where

⌡⌠P(x) dx =1, the apparent absorption coefficient is just exp(-(µx)eff)=⌡⌠P(x) exp(-µx) dx .

The greater the variation in sample thickness, and the larger µ gets, the more the apparent
absorption is suppressed.  Such distortions are called “thickness effects”.

For example, consider the case where a fraction  f of the sample area has pinholes in it,
and the rest is of uniform thickness x0, so that a fraction of the beam “leaks through” the

sample.  Then P(x)=f δ(x) + (1-f) δ(x-x0) and (µx)eff= -ln(f+(1-f)exp(-µx0)).  The

apparent absorption (µx)eff is plotted vs the true absorption µx in figure 1 for  several levels

of leakage f.  (µx)eff saturates at a value of ln(1/f) for large µ.

Figure 1:  The apparent absorption (µx)eff is plotted

vs the true absorption µx for 0%, 5%, and 10% leakage.

Another simple limiting case is that of  a gaussian distribution in thickness:
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All cumulants of order higher than the second are zero for a gaussian, so the series only has

two  terms:  (µx)eff= µx0 - 
1
2  µ2σ2.   Note that this form breaks down for large µ, because

the gaussian has a small but finite tail at negative thickness, which becomes troublesome as
µσ gets large.

In general the apparent absorption coefficient can be expanded as:

(µx)eff = - ∑
n=0

  
(-µ)nCn

n!  ,

where the coefficients Cn are called the “cumulants” of P(x).  The first cumulant of P(x),
C1,  is just the average thickness <x>; the second, C2, is the mean square variation in
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thickness: <(x-<x>)2>.  C3=<(x-<x>)3> depends on the amount the distribution P(x) is

skewed.  Because C2 is always positive, the initial curvature of a plot of (µx)eff vs µ is
always negative.    In fact, the curvature of the function

(µx)eff = f(µ) = -ln 



⌡⌠P(x) exp(-µx) dx   

is negative (or zero) for all values of x, as can be readily shown by differentiating twice
with respect to µ. In fact, you can verify for yourself that the slope and curvature at any

value of µ are just the first and second cumulant (mean position and mean squared width)

of the modified distribution Q(x;µ)=P(x) exp(-µx).  Both of these are non-negative, and

tend to zero for large µ for any continuous P(x) (as long as P(x)=0 for x<0, i.e. negative

thicknesses aren’t allowed).  In summary, a plot of (µx)eff vs µ tends to a straight line for

large µ.  The slope of this line is the effective thickness of the sample.  Evidently, if the
absorption coefficient is large enough, the slope corresponds to the true thickness of the
thinnest part of the sample.  If the sample has pinholes, the (µx)eff vs µ curve asymptotes
to a constant value (slope zero) of ln(1/f), where f is the fraction of the sample area with
pinholes.

Ok, fine, but what does this have to do with EXAFS?  The crucial point is that
thickness effects always suppress EXAFS amplitudes, even when one normalizes the data
by dividing by the measured edge step. Normalizing the wiggles in this manner does tend
to compensate somewhat for the spurious amplitude reduction, but it doesn’t do the whole
job.  The following derivation, together with the previous discussion, treats the general
case.

The measured EXAFS is the variation in apparent absorption f(µ) above the edge,
divided by the measured edge step:

χeff = 
f(µa+δµ)-f(µa)

f(µa)-f(µb)
   ~  

df

dµ
  |µa  

δµ
f(µa)-f(µb)

  where δµ is the true variation in µ (which

us taken to be small), and µa and µb are respectively the absorption above and below the

edge. The true χ is defined as χ = 
(µa+δµ)-(µa)

µa-µb
  = 

δµ
µa-µb

  .   Thus, thickness effects alter

the measured EXAFS amplitudes by the ratio: 
χeff

χ
  = 

df

dµ
  |µa  

µa-µb

f(µa)-f(µb)
 .   To evaluate the

right side of this equation, consider the taylor  expansion:

f(µb) = f(µa) + 
df

dµ
  |µa  (µb - µa) + 

1
2 

d2f

dµ2
  |µa (µb - µa)2 + ….   

This can be rewritten:

  
df

dµ
  |µa  - 

f(µa) - f(µb)

(µa -  µb)  
   =  

1
2 

d2f

dµ2
  |µa (µa - µb) + ….

The series is essentially an expansion in powers of a parameter of size roughly ~µaσ,

where σ is the rms width of P(x).  From the previous discussion, the curvature of f is
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always negative or zero, and µa>µb, which implies that right side is negative or zero.

Therefore χeff / χ  is less than (or at most equal to) unity.


