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    Systematic Errors in Fluorescence EXAFS    

Fluorescence detection of EXAFS is usually the most appropriate mode of detection of
x-rays for dilute samples, such as biological samples.  Although the signal to noise ratio in
fluorescence mode is often superior to that in transmission mode,  the fluorescence
excitation spectra are more susceptible to systematic errors.  This note describes some of
the pitfalls, and steps that can be taken to avoid them.

In the conventional transmission experiment (figure 1), the flux of monochromatic x-
rays incident on the sample is monitored by a semitransparent ionization chamber (I0), and
the flux of x-rays transmitted through the sample is measured by another ionization
chamber (I), which is usually totally absorbent.  If the sample is of uniform thickness x,
the x-ray absorption coefficient µ(E) of the sample is given by  I = I0 exp(-µx), or µx =

ln(I0/I).  Actually, the measured µx is the absorption coefficient of everything between the
two  ionization chambers, including air, entrance and exit windows, etc.  Furthermore, the
sensitivities of the ionization chambers decrease with increasing x-ray energy, so there are a
number of extraneous factors that multiply  the ratio I0/I.  When the logarithm is taken,
these multiplicative factors are transformed into a slowly varying additive  background,
which is easily and unambiguously subtracted out in the early stages of data analysis.
Thus, in transmission measurements, extraneous materials in the beam path are not of
concern, as long as they do not contain the elements being measured and they do not
attenuate the beam very much.

Figure 1
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The situation is quite different in fluorescence mode (figure 2) because no logarithm is
taken, and the spurious multiplicative factors result in altered EXAFS amplitude functions.
Such effects do not cancel out even if the two detectors are identical (figure 3).  The
detectors are inherently functionally inequivalent because the front detector measures a
monochromatic beam at the incident energy E, while the rear detector measures a
combination of fluorescence at energy Ef and the scattered radiation at  Escat ≤ E.  Special
attention therefore must be given to making sure these energy dependent factors are the
same for the material under study and the standard compounds, so that they cancel out.  To
ensure this, the x-ray absorption properties of all of the samples should be very similar,
and the physical geometry of the experiment should be the same for all materials being
directly compared.  Furthermore, it is very important that, for thick samples, the
concentration in the sample of the element of interest (for example, Fe) not be too large.
The reason is this:  as the absorption of the Fe increases, the effective penetration depth of
the x-rays in the sample decreases, which tends to compensate for the increase in
absorption.  This results in a nonlinear distortion of the measured spectra.  This is worked
out explicitly below.  The main points are, if the sample is concentrated, it must be thin.  If
it is dilute, it should be thick.  Fluorescence EXAFS spectra of thick, concentrated samples
(such as metallic foils, or concentrated samples made of particles that are too large) will
generally be severely distorted.

Figure 2
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Figure 3

 EXAFS experiment with scatterer as flux monitor
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Example:

In the simplest experimental configuration, a slab of sample is oriented at an angle Θ
with respect to the incident beam direction (figure 4).  It is easy to work out the probability
that a fluorescence x-ray photon incident on the sample will be collected by a detector
located1 in the direction Φ.   This probability is just the probability that:

1)  the photon penetrates to a depth  x in the sample:
exp(-µ(E)x/sinΘ)

2)  and that it is absorbed by the element  (for example, Fe) in a layer of thickness dx:
µFe(E) dx

3)   and as a consequence it emits with efficiency  ε a fluorescence photon of energy Ef :
ε

4)  which is radiated into the solid angle Ω subtended by the detector in the angle Φ:

(Ω/4π) exp(-µ(Ef)x/sinΦ)
5)   and this product of factors is summed (integrated) over all depths x up to xmax:

(Ω/4π) ε µFe(E)exp(-µ(E)x/sinΘ)exp(-µ(Ef)x/sinΦ)  dx,

                                                
1  Actually, an integral over all directions Φ that intersect the detector must be done, at least in principle.
The integral can be roughly approximated by using the angle to the center of the detector, and accounting
for the solid angle subtended by the detector. In practice the average Θ and Φ are usually both about 45˚.



4

That is, explicitly:

(Ω/4π) ε µFe(E) ⌡⌠
0  

xmax

 e
[-(µ(E)/sinΘ +  µ(Ef)/sinΦ)x]

  dx  =

=(Ω/4π) ε µFe(E)  
1 -  e

[-(µ(E)/sinΘ +  µ(Ef)/sinΦ)xmax]

[µ(E)/sinΘ +  µ(Ef)/sinΦ]
  [1]

X-rays incident on a slab of sample

Figure 4
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For thin samples (and angles that are not too small), the quantity
[(µ(E)/sinΘ + µ(Ef)/sinΦ) xmax ] << 1 ,

and the exponential can be approximated by the first two terms in its Taylor expansion,
e.g.

exp(z) = 1 + z + ...

for small z.  In this case equation 1 reduces to

(Ω/4π) ε µFe(E) xmax,

as it should, by definition,  for a very thin sample.
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For thick samples (µx >> 1), the exponential in equation 1 vanishes, and we obtain

 
(Ω/4π)εµFe(E) 

[µ(E)/sinΘ +  µ(Ef)/sinΦ]
   . [2]

Now, µ(E) is the total absorption coefficient of the Fe in the sample, plus everything

else:   µ=µFe + µelse.  The quantity we are actually interested is µFe(E).  If the absorption
coefficient due to Fe in the sample is only a small part of the total absorption, the
denominator of equation 2 just multiplies the desired µFe(E) by a slowly varying function
of energy (as long as no other elements in the sample have an absorption edge over the
energy range of interest).  On the other hand, if µFe is not much less than µ, then serious
distortions of the spectra result.  For example, consider what happens if the sample is an
iron foil, and the exit and entrance angles Θ and Φ are 45˚.  Equation 2 gives:

 
2(Ω/4π)εµFe(E) 

[µFe(E) + µFe(Ef)]
   .

If the constant term µFe(Ef) in the denominator were not present, the desired term

µFe(E) in the numerator would be totally canceled out by the same term in the denominator:
one would measure a featureless spectrum, regardless of the true absorption coefficient.
Because of the other term, in reality one observes a strong suppression of features in the
spectrum rather than total cancellation.    Thus, when the Fe absorption increases (for
example, over the absorption edge), the measured absorption increases by a much smaller
amount2.  In short, use of a thick, concentrated sample results in severely distorted EXAFS
amplitudes  and XANES spectra.

Essentially the same problems occur even for dilute samples, if the element of interest is
contained in concentrated particles that are suspended in a dilute matrix.  If the particle size
is larger than about one absorption length,  the penetration depth varies with the absorption
coefficient of the species of interest, and the spectra are nonlinearly distorted as a
consequence.  Therefore the particle size must be made sufficiently small in fluorescence
mode, just as it must in transmission mode3.

The presence of the angles Θ and Φ in the equations above shows that the energy de-
pendence of the measured signals (and the EXAFS amplitudes) depend on the geometry of
the experiment, e.g. the size of the detector and its position relative to the sample.  Also
note that the equations above refer to a planar sample;  a sample of different shape would
give a somewhat different equation. To minimize systematic errors,  one should keep the
experimental geometry and the sample matrices as similar as possible to each other for all

                                                
2  Another effect has similar but less pronounced consequences.  The elastically scattered background
decreases when the absorption coefficient increases, which also tends to suppress features in the spectrum.
3  See ”Thickness and particle size effects” in this series ”Basic Techniques for EXAFS”.
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materials being compared.  In polarized EXAFS and XANES measurements, care should
be taken to ensure that such effects are calibrated out when the sample is rotated.

These considerations show that special care must be taken to obtain consistent EXAFS
amplitudes when obtaining fluorescence EXAFS spectra. If attention is paid to such
experimental details, higher accuracy should be obtainable in determining coordination
numbers and EXAFS Debye Waller factors.


